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Study of fatigue crack growth retardation due 
to overloads in polymethylmethacrylate 

Y. IMA I ,  T. TAKASE,  K. N A K A N O  
Department of Mechanical Engineering, Nagasaki University, Nagasaki, 852, Japan 

Retardation of the fatigue crack growth after overloading was investigated in conjunction with 
the craze deformation at the fatigue crack tip in polymethylmethacrylate. The craze defor- 
mation was measured by optical interference and analysed numerically with reference to a 
previously proposed craze model. In the base line loading, the craze stress concentrates at the 
crack tip with the applied load and, hence, the non-uniform stress distribution is attained at 
the maximum load. The overload alters this stress distribution. Just after overloading, the 
crack tip stress does not reach the previous level, even at the same maximum load. The 
reduced crack tip stress correlates well with the retarded duration after the overload. It is con- 
cluded, therefore, that the craze stress reduction at the crack tip is the cause of crack growth 
retardation. 

1. Introduction 
As the region of plastic deformation in some polymers 
is often confined to a craze zone and is observed 
microscopically, the stress state around the craze has 
been of great interest. Following Knight's calculation 
[1] for an isolated craze, many craze models [2] have 
been proposed. Recently, perceiving the deformation 
of craze at the crack tip, Williams [3], and D611 et al. 

[4] attempted to study the mechanism of fatigue crack 
growth using the Dugdale model and quantitative 
investigations have been made assuming the uniform 
stress distribution along the craze. Lauterwasser 
and Kramer [5], on the other hand, using the density 
measurement of crazes on thin polystylene films, cal- 
culated the craze displacement and stresses. This 
method, however,, may not be applicable to fatigue 
cracks and crazes in bulk materials. The optical inter- 
ference method [6, 7], which, although available only 
for transparent materials, is suitable to use for observ- 
ing crazes in bulks despite the necessity to assume 
permanent strain of the craze fibril beforehand. 

In this paper, which is based on the modified Dug- 
dale model proposed previously [8], allowing the craze 
stress to vary along the craze boundary, the method of 
analysing craze displacement and stress along the 
craze will be developed at the tip of growing fatigue 
crack. Crack growt h retardation after overload [9] in 
polymethylmethacrylate (PMMA) will be investigated 
in association with the alteration of craze stress distri- 
bution before and after the overload. 

2. Experimental and analysing 
procedure 

2.1. Craze contour measurement 
In order to measure optical interference fringes from 
the crack and craze during the fatigue loading, a 
special loading device consisting of cam and lever 
system, shown in Fig. 1, was installed on the micro- 
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scope stage. Compact-tension specimens, as shown in 
Fig. 2, were used. The size of the specimen was 
restricted by the working distance of the objective 
lens. A fatigue pre-crack was at first introduced from 
the Chevron notch for each specimen and the measure- 
ment of craze geometry was made after the steady 
state crack growth was attained. The very slow cyclic 
rate, 1 cycle per minute, was used through the fatigue 
test in order to follow the geometric change of craze 
successively during a cycle. 

The overload was applied by moving the cam posi- 
tion manually on the loading apparatus. In the course 
of base-line fatigue loading, we stopped the cam at the 
minimum load level and changed its position by turn- 
ing the fixing thread. This procedure took less than 
3 sac so that the influence might be small compared to 
60 sec for a single complete cycle. Relation between 
load level and cain position along the lever was 
calibrated beforehand. After overload, the cam was 
returned to its previous position and the fatigue load- 
ing was continued. 

The usual optical interference method was employed 
to measure the craze contour. Interference patterns 
from the craze were photographed at several loading 
levels as well as at maximum and minimum loads in 
one cycle. For the overload experiment, three successive 
cycles including before and after overloading were 
considered. The fringe patterns were traced by a 
microdensitometer and fringe orders were measured 
as a function of the distance from the craze tip, r. The 
increment of craze displacement for one fringe order 
corresponds to 2/4#, where 2 is the wavelength 
(2 = 546 nm) and # is the refractive index of craze. 
The latter was obtained from the following relation 
with bulk refractive index /x 0 = 1.49 and craze 
strain 

/x 2 -  1 /x 0 - 1 1 
- (~) 

#2 + 2 bz~ + 2 1 + 
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Figure 2 Specimen geometry. 

Figure 1 Loading apparatus; a, specimen grip, b, load cell, c, cam 
and lever. 

2.2. Craze s t ress  fo rmu la t i on  
The plastically deformed region is confined to a thin 
craze zone at the tip of a crack. Therefore, the stress 
state around the crack tip may be well expressed by 
the Dugdale model, which assumes the plastic zone to 
be a line. 

We consider, here, the elastic stress field around the 
tip of semi-infinite crack subjected to remote loads 
corresponding to the stress intensity Kj, as illustrated 
in Fig. 3. Assuming that the bulk material, the size of 
which was originally g(r) at a distance r from the craze 
tip, has deformed, due to the craze stress a(r), into 
craze fibrils to 5(r), which is now the size of craze 
thickness. Note that the Dugdale model gives the 
elastic displacement of the bulk around the craze zone 
and also that the elastic displacement of the craze-bulk 
boundary is 5(r) - g(r) because the point concerned 
originally a distance g ( r )  from the centre line. 

With the craze length R, the above may be for- 
mulated, with reference to Fig. 3b, as follows 

2(1 - v 2) 
cS(r) g ( r )  - 

~ E  

X (2' / ' [ t")  l 2h" I - -  j(} 0"(,~') l o g  xfi - -  

and 

= jo d.,' 

(2) 

(3) 

then 

2(1 - v 2) 
6(r )  - g ( r )  - 

~zE 

× S a ( s ) ( 2 ( r )  ' ' z s  - - l o g  x/~xfi+'~)_ x/~ ds (2)' 

where E and v are Young's modulus and Poisson's 
ratio of the bulk material, respectively, and 
E = 3GPa,  v = 0.3 were used. 

We consider, next, the deformation of craze fibrils 
in Fig. 3a. As long as the crack growth per cycle is 
much less than the craze length, the craze fibrils near 
the crack tip can not be produced at one loading cycle 
but must exist already and have been subjected to 
many fatigue cycles. Kambour and Kopp [10] have 
shown that under similar conditions, polycarbonate 
(PC) craze fibrils tend to deform elastically. The same 
may hold in this case. The fatigue craze fibrils of 
PMMA are, then, assumed to deform elastically 
according to the following relation between the craze 
stress a and the total strain 

= e + a / F  (4) 

where e is the permanent strain encountered once 
at the fibrillation and F the elastic modulus of the 
matured craze fibril. Then the craze displacement 5(r) 
is expressed as 

6(r) = g(r ) ( l  + e + ~ ( r ) /F )  (5) 

e = 0.5, F = 100MPa were used in the calculation. 

2.3. M e t h o d  of numer ica l  ca l cu la t ion  
Eliminating g ( r )  from Equations 2' and 5, we obtain 
the integral equation of ¢(r) and 5(r), which, being 
combined with Equation 3, may be solved numeric- 
ally. At first, craze length R is divided into N segments 
and craze stress a(r) is assumed to vary linearly over 

(a) R 

C ~---~.~..~ intensity K I 

-, , q r ~ r - a ~ o ~ C r a z e  tip 

(b) l 

Figure 3 Model of the craze at the tip of 
semi-inlinite crack (a) craze matter, (b) 
bulk material around the craze. 
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S t a r t  

Fringe order, n(r) 
Stress intensity factor, K I 

_ _ ~  Craze strain from Eq. 4, 

Refractive index from Eq. 1, 

l Craze displacx~rnent n{r)~ from 

I Craze stress from Eqs 6 and 7, 

E k 

~k 

C r a z e  d i s p l a c a ' m n t  f r o m  E q .  6 ,  6 i 

Stop 

No 

Figure 4 F l o w - c h a r t  for  the i terat ive ca l cu l a t i on  o f  c raze  stress a n d  

d i sp lacement .  

each segment. That  is 

rk  - -  r k  1 

( rk  1 ~ r ~. rk, k = 1, 2 . . . .  N )  

Then, the integral equations are converted into follow- 
ing algebraic equat ions 

,v r o e  

(AkGa. , + BkOk) - 9(1 -- v 2) 
k = ]  

~,. + Fe 
x 6(r,) (6) 

o T + F(1 + e) 

( G a k _ ~  + Okra)  = KI (7) 
k = l  

where 

d k = 

B k 

D k 

r!. rk l / 

[ ( Y ~ i S ) 2  2 Xll~i] x 2 - log " ~  

j ' r / ,  S r k  I 
- rk I F k rk  I 

Vs - Vr, 

,,'.: (l s - - & .  i ) ~ d  s 
i r k - -  r], i 

~rl, S - -  rk I l 

J r~ i rk - rx l , f s d S  

ds 

ds 

I\%% I 
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t -  
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Distance from the crack tip (#m) 

Figure 5 In ter ference  f r inge va r i a t i on  d u r i n g  one  cycle ( e  K~ = 

0 . 0 8 M P a m  v2 (rain),  zx K I = 0 . 4 2 M P a m  I~ ( loading) ,  O K t - 

0 . 6 0 M P a m  ! 2 (max)  a n d  v K I = 0 . 4 2 M P a m  12 (un load ing) ) .  

In the calculation, we used N = 10 and set up 
Equat ion 6 to 20 terms, (r,, i = 1 . . . . .  20), where the 
craze displacements, 5(ri), were interpolated from the 
measured. Since the number  of  equations exceeded the 
number  of  unknowns,  the least square method was 
employed to obtain o k (k = 0, 1 . . . . .  N).  

Equat ion 6 involves the unknown oi on the right- 
hand side and, moreover ,  craze displacement 5(ri) 
should be converted from the measured fringe order  
by using the refractive index/~, which is to be calcu- 
lated from Equat ions  1 and 4. Once more,  /x is the 
function of  craze strain. In order  to attain consistency, 
therefore, the calculation was executed iteratively. The 
flow-chart of  the procedure used is shown in Fig. 4. 

3. Resu l ts  and  d i s c u s s i o n  
3.1. Craze stress var ia t ion  d u r i n g  a fa t i gue  

cyc le  
Photographs  were obtained of  the craze during load- 

ing and unloading for a number  of  levels of  KI. A 
typical set of  results is shown in Fig. 5. K&~,, 
0.60 MPa  m ~/2, corresponds to the crack growth rate 
of  0.15/~m cycle ~. The variation near the crack tip is 
significant in contrast  to the one near the craze tip. 
Even at the KI,,,~o level, the crack tip remains open, 
showing a fringe order of  about  5. At loading and 
unloading periods, dissimilar craze contours  were 
observed even at the same K~ level. 

In Fig. 6 these fringe orders were converted into 

1.0 
K 

0.8' 

0.6' 
5E i 

0.4 
o ] 

<b 0.2 -~-£~ 

I 
O 0.2 0.4 0.6 0.8 1.0 
Disl(]nce from the crack tip I - r / / ?  

Figure 6 C r a z e  d i sp l acemen t  va r i a t i on  d u r i n g  one  cycle a n d  the 
c raze  or ig ina l  th ickness  ( symbol s  as fo r  Fig.  5) R = 31 gin .  
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Figure 7 C r a z e  s t ress  v a r i a t i o n  d u r i n g  o n e  cyc le  ( s y m b o l s  as  f o r  
F ig .  5, []  K~ = 0 . 2 5 M P a m  L'2 ( l o a d i n g ) ,  © K l = 0 . 2 5 M P a m  v2 

( u n l o a d i n g ) ) .  

displacement. The original craze thickness g(r) is also 
calculated and shown in the same figure. At the crack 
tip, the bulk material, originally 0.3/lm thick, deformed 
into crazes and extended to about 0.8/an at K4,,, ~. 

The craze stresses or(r), which cause the craze exten- 
sion, are shown in Fig. 7. Similar stress profiles have 
been obtained by using other methods [11, 12J. The 
variation of stress at the crack tip is greatest along the 
craze, exhibiting very high stress at K~,,~, . This high 
craze stress may bring fibril breakage there resulting in 
crack growth. 

At a level of  K~ of about  0.08 MPa m ~/2, the craze 
stress at the crack tip reduces to almost zero. A further 
decrease of KI induced compression on some part of  
the craze length. When the crack surfaces become 
attached and also bear compression stress the craze 
stress may be somewhat reduced. 

3.2. Effect of overload 
When an overload is applied in the course of  a fatigue 
cycle, subsequent crack growth usually exhibits retard- 
ation as seen in Fig. 8. In this example, a base line load 
was K4,,~ x = 0.61 M P a m  1/2 and an overload, Klo L = 
0 . 7 2 M P a m  <'2, that is, about 18% overload. After a 
little growth during the overloading, the fatigue crack 
stopped growing for about  a 60 cycle duration. 

E 
E 

396 

/ 
d 

3 . 9 5  o - o  

/ / ~ O v ~ e r  load 

I 
3 . 9 4  -- f 

- 5 0  0 5 0  I O 0  1 5 0  

Number of cycle 

Fiy, ure 8 C r a c k  g r o w t h  r e t a r d a t i o n  d u e  to  o v e r l o a d i n g .  K~ = 0 .03  

t o 0 . 6 1 M P a m  t 2  KEOL = 0 . 7 2 M P a m  12. 

This retardation mechanism may be understood 
through the craze stress redistribution. Fig. 9 shows 
the craze contour at the peak level of overload, com- 
pared with those before and after that load. The 
overload clearly widened the craze geometry in both 
thickness and length. After the overload cycle, the 
craze contour did not return to its previous geometry 
even at the same load. 

The change of geometry is associated with the alter- 
ation of craze stress as shown in Fig. 10. In the over- 
load cycle,  the craze stress increases above the 
previous level over the entire length. Sometimes a 
small peak appears somewhere along the craze corre- 
sponding to the craze growth. After the overload 
cycle~ however, the craze stress reduces over the most 
part of  the craze, and the decrement near the crack tip 
is particularly dominant. Consequently, the craze 
stress decrement near the crack tip would depress fibril 
breakage there and hence result in crack growth retard- 
ation. The decreased craze stress at the crack tip may 
be related to the delayed duration. Fig. 11 indicates 
that the lower the attained peak stress is, the longer 
the retardation lasts. 

After the overload application, contradictorily, the 
craze thickens more with smaller craze stress com- 
pared with the previous deformation. This may be 
explained by saying that the craze thickening during 
the overload period was brought about by new fibril- 
lation from the craze-bulk boundary. In Fig. 12, the 
original craze thicknesses g(r) before and after the 
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FiA, ure 9 C r a z e  c o n t o u r s  b e f o r e  a n d  

a f t e r  t he  o v e r l o a d  

(a) Kioc = 0 .85 M P a  m / 2 (b) Kio c - 
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Fi,~mre 10 Craze  stresses before  

a n d  a f te r  the ove r load  (a) Kjo , = 

0.85 M P a  m I -', (b) Rio t - 

0.93 M P a  m I -' ( symbol s  as Fig.  9). 

overload are compared. The overload clearly increases 
the original thickness. 

3.3.  S t r e s s - s t r a t a  r e l a t i o n  o f  c raze  f i b r i l s  
In the present calculation, the elastic modulus of 
matured craze fibril, F, was assumed to be 100 MPa. 
The ratio to Young's modulus of the bulk, F/E, was 
0.03, which is a little higher than the value suggested 
by D611 el al. [7], 0.01 to 0.02. For PC, on the other 
hand, FIE = 0.15 was measured [10]. 

In order to look over the influence of craze modulus 
to the stress distribution, the calculation was executed 
for three different modulus values, 50, 100 and 
300MPa. The calculated stress distributions are 
shown in Fig. 13. Quite similar distributions were 
obtained except very near the crack tip. The reason 
may be as follows: to cancel the stress singularity at 
the craze tip, almost the same stress distribution is 
required no matter how much the craze modulus is. 

The next question is, then, what the effect of the 
modulus is. Even for the same stress, crazes deform 
differently with moduli. In Fig. 14, the calculated 
original craze thickness g(r) at the middle of the craze 
length was plotted for three different modulus values, 
For F = 50 and 300MPa, the thickness g(r) must 
decrease in the loading or unloading period in order to 
adjust the deformations between the surrounding bulk 
material and craze fibrils. The decrease of g(r) means 
the craze fibril shrinkage into bulks. However, it may 

be unrealistic because the craze fibrillation is thought 
to be irreversible under ordinary testing conditions. 

Consequently, it is preferable for g(r) to increase at 
all times or at least remain ahnost constant during 
both loading and unloading like the case for F = 
100 MPa, which may be the most suitable for this case. 

As seen in Fig. 13, extremely high stresses are cal- 
culated near the crack tip. Since the fibril breakage 
occurs there resulting in the crack growth, an increase 
of stress is to be expected at that location. In the 
present calculation, however, another reason must be 
pointed out. The craze modulus F was assumed con- 
stant even at the crack tip up to fibril breakage. Crazes 
probably exhibit a non-linear stress-strain relation 
just before breakage, which would reduce the stress at 
the crack tip. 

4. C o n c l u s i o n s  

With reference to the previously proposed craze 
model, the numerical method of analysing the craze 
deformation has been demonstrated. This method 
takes the whole consistency between the refractive 
index, craze strain and craze boundary deformation 
and gives more detailed variations of craze stress and 
original craze thickness along the craze than before. 

The craze stress concentrates at the crack tip with 
the applied load to result in fibril breakage. When the 
overload is applied in the course of fatigue cycling, the 
craze grows wider and sometimes longer accompanied 
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Figure 11 R e t a r d e d  d u r a t i o n  re la ted to the peak  stress a t t a ined  at  

the c r a c k  tip a f t e r  the ove r load .  
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Figure 13 Effect of the craze modulus to the craze stress distribution 
(K~ = 0.64MPam :;2, R = 34/*m, zx F =  300MPa, O F =  
100MPa, v F = 50MPa). 
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Figure 14 Trial calculation of the original craze thickness g(r) at the 
middle of the craze length for three different moduli. (r/R = 0.50, 
zx F = 300MPa, O F = 100MPa, v F = 50MPa). 

by an increase in the original thickness. Consequently, 
the crack tip stress reduces. It may be concluded, 
therefore, that this stress reduction is the cause of 
crack growth retardation after the overload. 
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